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ABSTRACT

Locating additional occurrences of at-risk species can inform assessments of their status and conservation needs (including potential legal
protections). The perennial bearded beaksedge (Rhynchospora crinipes) ranges from Mississippi to North Carolina, but known occurrences are
limited. Because of the species’ apparent rarity, a model to identify areas with suitable habitat conditions for the species will allow conservationists to
effectively prioritize and allocate scarce surveying resources. We used known occurrence records, a suite of environmental datasets, and four species
distribution modeling techniques (generalized additive, GAM; maximum entropy, MaxEnt; generalized boosted, GBM; and weighted ensemble) to
generate maps to inform surveys for R. crinipes. The ensemble approach improved predictive performance (AUC-PR ¼ 0.95) compared to other
techniques (individual model AUC-PR ranged from 0.7 to 0.8). We also obtained quantitative insights on the species’ habitat relationships, including
the likelihood of R. crinipes’s presence near Atlantic white cedar (Chamaecyparis thyoides) habitat and floodplains, which is consistent with prior field
observations. The ensemble model indicated that 3.6% of the study area could be suitable habitat, but only 0.38% had high suitability. Small stream
riparian habitats and Atlantic swamp forests in Alabama, Florida, and Georgia had the highest proportion of suitable areas. Prioritizing surveys in
areas with model-indicated high habitat suitability is expected to reveal additional R. crinipes occurrences. We suggest surveying efforts for other at-
risk species may benefit from using an ensemble modeling approach to identify and prioritize survey areas and improve ecological knowledge of these
species.

Index terms: at-risk species; ensemble modeling; habitat suitability; SDM

INTRODUCTION

At-risk species pose numerous challenges for conservation
practitioners, particularly when determining whether or not
such species may need active management or warrant legal
protections. Many conservation challenges arise from limited
available information for these species, including poorly
described habitats and ecological needs, poorly defined ranges,
and small number of populations that increase difficulties
locating occurrences in the wild (Rutrough et al. 2019). As such,
surveys can become resource intensive and overly burdensome
(Pellet and Schmidt 2005). Tools that help identify and prioritize
areas with a higher likelihood of finding an at-risk species can
improve the efficiency and effectiveness of allocating scarce
resources for surveys (Guisan et al. 2013; Tulloch et al. 2016).

Species distribution modeling (SDM) can be used to identify
species’ suitable habitat based on known occurrence locations
and associated environmental data (Franklin 2013). This
approach has advanced in recent years with various new
modeling techniques being developed, which include regression-
based and machine-learning methods (Elith and Graham 2009;

Jones-Farrand et al. 2011). The ample number and variety of
available modeling methods, however, may overwhelm conser-
vation practitioners interested in developing an SDM for a
particular species, as each method has its own attendant
requirements (e.g., use of presence-only data or presence and
absence data) and limitations. Further, each method will also
likely produce different results, making model interpretation a
challenge for novice and experienced practitioners alike.
Ensemble models can reduce the subjectivity associated with
selection of any particular modeling approach by combining the
output (e.g., suitability scores) of multiple models into a single
final weighted model (Araújo and New 2007). These types of
models are commonly used in climate and weather forecasting,
where ensemble models are preferred over any one of the
numerous available climate models as they better capture
uncertainty associated with the various modeling approaches
(Lutz et al. 2016). As such, ensemble species distribution models
present an attractive option for practitioners as they simplify the
process of choosing a particular model technique and reduce the
uncertainty associated with individual model algorithms (Guisan
et al. 2017).
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Rhynchospora crinipes (Gale) is a perennial plant species that
may benefit from improved understanding of its habitat
distribution and more efficient, effective surveys (sensu Imm et
al. 2001). R. crinipes, commonly known as bearded beaksedge,
Alabama beaksedge, mosquito beaksedge, or hairy-peduncled
beakrush, has a broad range within the southeastern United
States with occurrences scattered across five states including
southern portions of Mississippi, Alabama and Georgia, the
Florida Panhandle, and central North Carolina (Schotz 2017).
No occurrences are known from South Carolina (Kral 1996;
McMillan 2006). This perennial plant species is typically found
in the Atlantic and Gulf Coastal Plains (Kral 1996), often on
banks and bars of blackwater streams (Kral 1996; Carter 2005),
and in drained areas with high percentages of silt and clay
(McMillan 2006; Chafin 2011). Rhynchospora crinipes has also
been described as having a close association with Atlantic white
cedar (Chamaecyparis thyoides (L.)) occurrences (Kral 1996).

As presently understood, R. crinipes is considered rare
throughout its known range, although it can be locally abundant
(Kral 1996; Schotz 2017). Continued discoveries of previously
unknown populations since the 1980s, along with the apparent
abundance of ostensible suitable habitat, have led some to
contend that more populations may yet be found (Kral 1995;
Sorrie et al. 1997; Schotz 2017). While focused surveys and
fortuitous discoveries have continued to identify new locations
of R. crinipes (e.g., Anderson 1988, 1991, 1995; Kral 1995; Sorrie
et al. 1997), future surveying efforts to locate additional
populations of this—and other at-risk species with similarly
wide ranges—could become challenging and overly burdensome
without a tool that informs such surveys. Accordingly, we sought
to (1) produce and evaluate a suite of individual and ensemble
models that can identify areas with greater potential suitability
for R. crinipes and, consequently, allow conservation managers
to prioritize future surveys; (2) identify habitat associations that
can improve our ecological knowledge of the species; and (3)
estimate the species’ current representation on protected lands
based on the best available model. We discuss how similar
approaches to generating distribution models can be applied to
other at-risk species to improve the efficiency and effectiveness
of survey efforts.

METHODS

Study Area
We modeled R. crinipes habitat suitability across 87,148 km2

of the coastal plain in the southeastern United States. The
modeled area included the species’ known range (portions of
Alabama, Florida, Georgia, Mississippi, and North Carolina) and
portions of South Carolina, as we wanted to detect potential
suitable habitat in that state (Figure 1). To delimit the study
area, we used six-digit hydrologic unit code (HUC6) basins in
the coastal plain within these states and trimmed them to 320
km inland. We chose this distance since the farthest inland
record for the species was approximately 320 km from the Gulf
of Mexico in Georgia (the farthest record from the Atlantic coast
was located in North Carolina at around 200 km inland) and
since there is no previous indication that the species is likely to
occur in Virginia. However, in Florida, we restricted the study

area to HUC6 basins across the Florida panhandle and northern
portions of peninsular Florida, as no records have been reported
at lower latitudes. A small portion of Louisiana was included as
it overlapped with the basins and Kral (1996) suggested that the
species could occur in the eastern portion of the state.

Data
We modeled habitat suitability using two types of data: (1)

georeferenced occurrence records for the species (presences),
and (2) environmental predictor variables presumed to be
associated with conditions required for R. crinipes presence in
the form of digital raster surfaces.

We obtained 165 presence records primarily from State
Natural Heritage Programs, surveys (e.g., Kral 1995; Schotz
2017), and available herbarium records. We filtered these
records to randomly select one record for every 500 m to prevent
overfitting the models, resulting in a final set of 91 presence
records for model training and evaluation (Figure 1). To
compensate for the lack of absence data (both presence and
absence data are necessary to calibrate SDM models), we
generated a set of random points where the species is assumed to
be absent or where the species may be present but was not
observed (pseudoabsences; Phillips et al. 2009). Given the
riparian nature of the species, we used a two-step sequence of
operations to restrict the possible area for drawing pseudoab-
sence random points. First, we retained all areas within an
arbitrary 50 km buffer of occurrence records to avoid areas
distant from known locations. Second, within the retained area,
we then created a 200 m (maximum distance to a stream within
our occurrence dataset) buffer around all streams registered in
the National Hydrography Dataset (NHD; USGS 2018a). We
used this buffer as our pseudoabsence sampling area, where we
drew 500 random points for model calibration and testing.

We compiled environmental variables that have been
associated with R. crinipes (e.g., those described by Kral [1995]
and Schotz [2017]). Therefore, we included variables related to
soil characteristics including percent clay and soil organic

Figure 1.—Study area corresponding to the approximate R. crinipes
range in the southeastern United States including portions of the states
of Alabama, Florida, Georgia, Mississippi, North Carolina, and South
Carolina. The occurrence records used to build the models are depicted.
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matter. To incorporate the species’ riparian habitat needs, we
included distance to streams, and the flow and velocity of the
nearest stream segment. We also incorporated vegetation
variables that might influence light availability and plant
associations, such as percent tree canopy and Normalized
Difference Vegetation Index (NDVI) (complete set of variables
in Table 1). We obtained environmental predictor variables from
geospatial data repositories including WorldClim (Hijmans et al.
2005) for climatic variables, Landsat satellite imagery collections
on Google Earth Engine (Gorelick et al. 2017) for vegetation and
surface reflectance variables, SSURGO (USDA 2019a) for soils
variables, and the National Hydrography Database (USGS
2018a) for stream variables. We resampled all environmental
variables to a 30 m cell size. Since environmental variables could
be associated with each other (e.g., elevation and temperature),
we used Pearson’s correlation analysis to calculate the degree of
correlation among each combination of environmental variables
and retained variables that were not correlated to each other (jrj
, 0.7; Dormann et al. 2013).

Because of R. crinipes’s purported association with Atlantic
white cedar (cf. Kral 1996), we generated an ensemble suitability
map for Atlantic white cedar to use as a predictor variable for R.
crinipes. The process to generate this ensemble map was similar
to that described for R. crinipes, except for three key differences.
First, we used 99 spatially filtered occurrence records for Atlantic
white cedar obtained from the Global Biodiversity Information
Facility (GBIF 2019). Second, we restricted sampling of
pseudoabsence data to a 50 km buffer around presence data only
(not to a buffer around streams). Third, the environmental
predictor variables for this model were annual precipitation,
average coldest winter temperature, distance to floodplains, soil
organic matter, soil percent sand, tree canopy cover, NDVI, and
distance to streams. The resulting habitat suitability ensemble
map was not correlated to other predictor variables used for R.
crinipes (jrj , 0.7).

Data Analysis
We used three individual modeling approaches that are

commonly used in SDM, including a regression-based model
(i.e., generalized additive model [GAM; Hastie and Tibshirani

1986]) and two machine-learning models (generalized boosted
model, also known as boosted regression trees [GBM; Friedman
et al. 2000], and maximum entropy [MaxEnt; Phillips et al.
2006]). These models are among the most frequently used and
well-documented techniques encountered in SDM literature
(e.g., Elith et al. 2006; Elith and Graham 2009; Heikkinen et al.
2012). All statistical analyses were completed using R 3.5.2
software (R Core Team 2017). We first tabulated the pixel values
for all retained environmental layers at each presence and
pseudoabsence point. With this table, we then calibrated each of
the three models using the libraries mgcv for GAM (Wood 2018),
dismo for MaxEnt (Hijmans et al. 2017), and gbm for GBM
(Greenwell et al. 2019) with binary presence/pseudoabsence data
as the response variable and environmental predictor data as
independent variables. We then projected each calibrated model
to the full study area to generate three separate prediction maps,
each representing a habitat suitability index (HSI) for the
species, with pixel values ranging from 0 (no suitability) to 1
(high suitability). Since we used presence-only records in our
study, the habitat suitability index is understood as the similarity
to species’ used habitat (Latif et al. 2015).

We used a leave-one-out approach to evaluate the predictive
power of each model. This approach did not require splitting
data into separate training and validation datasets, and allowed
all records that were included in model calibration (n¼ 591) to
be also used for model validation by comparing them with a set
of model-predicted presences and absences. We first calibrated a
model using all records in the presence and pseudoabsence
environmental response table minus one observation row (i.e., a
training dataset of size n � 1, or 590 in our case). The omitted
record’s environmental data were then used to solve the
calibrated model to obtain a predicted presence value (i.e., a test
value ranging from 0 for predicted absence to 1 for predicted
presence). We replaced the omitted row back into the
environmental response table and removed the following row to
repeat the process and obtain the next predicted test value. We
iterated this sequence a total of 591 times to generate a list of
predicted test values of size n to be contrasted with actual
presence and pseudoabsence records. We used the AUC-PR
(precision recall of the area under the receiver operating

Table 1.—Environmental predictor variables. The first three columns correspond to the range (minimum, median, and maximum) of environmental values
associated to the presence dataset. The last three columns show the relative importance of each environmental predictor variable for each modeling approach. Since
each model algorithm (GAM, GBM, and Maxent) calculated its own model contribution index, we include the approximate importance of variables in terms of P
values for GAM, where smaller values indicate variables that better inform the model. We also include the relative influence of the model variable (GBM), and the
percent contribution to the model (MaxEnt), where larger values denote more informative variables in the respective model.

Values for presences Model contribution

Variable (units) Min Median Max GAM GBM MaxEnt

Annual precipitation (mm/y) 1123 1606 1680 0.01 14.1 1.8

Soil percent clay (%) 0.5 10 42.8 0.07 5.6 1.7

Soil organic matter (%) 0.5 15 72 0.38 15.6 2.8

Distance to streams (m) 0 30 200 ,0.001 8.2 7.6

Mean annual stream flow (cms) 0 0.02 0.056 0.03 6.4 1.6

Mean annual stream velocity (mps) 0 0.3 124.5 0.53 2.7 1.7

Distance to floodplain (m) 0 24.3 1714 0.04 7.5 35.6

Mean summer NDVI (units) 0.2 0.7 0.9 0.16 3.2 0.1

Tree canopy cover (%) 0 85 100 0.27 1.4 2

Atlantic white cedar suitability (HSI) 0.1 0.5 0.9 ,0.001 34.7 44.9
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characteristic curve) as a metric to evaluate the agreement
between actual and model-predicted presence and absence data.
While AUC-ROC is among the most popular evaluation metrics
in SDM literature, its AUC-PR variation can be more robust
when working with rare species (Sofaer et al. 2019a). The range
of possible AUC-PR values varies from 0.5 (poor model
performance) to 1 (good model performance). As a robustness
check, for each model we also calculated the AUC-ROC, the
Jaccard index, and Pearson’s correlation coefficients between
model-predicted suitability scores and actual presence and
pseudoabsence records.

We finally generated an ensemble model that reflected the
agreement of individual models and also weighted the predictive
performance of each individual modeling approach (Thuiller et
al. 2009; Trolle et al. 2014). We calculated the weight of each
model (GAM, GBM, and MaxEnt) by dividing its AUC-PR
performance score by the sum of all three AUC-PR scores. As
such, models with greater AUC-PR performance had higher
weight in the final ensemble. We multiplied each map by its
respective weight, and added the resulting products to form the
ensemble. The final ensemble model for each species thus
consisted of a map with pixel values of habitat suitability index
(HSI) ranging from 0 (not suitable) to 1 (highly suitable). We
calculated the performance metrics for the model ensemble in a
similar fashion to individual models by contrasting the model
predicted values with actual presence and pseudoabsence values.

RESULTS

The ensemble habitat suitability model for R. crinipes had a
greater performance compared to its individual components in
two of the four performance metrics (e.g., AUC-PR ¼ 0.95 &
AUC-ROC ¼ 0.99). As such, the GAM model exhibited the
lowest performance (e.g., AUC-PR ¼ 0.7) compared to that of
GBM (AUC-PR¼ 0.74) and MaxEnt (AUC-PR¼ 0.8) (Table 2;
Figure 2). The environmental predictor variables that consis-
tently exhibited greater importance to inform individual models
were distance to floodplain, suitability for Atlantic white cedar,
and annual precipitation, whereas NDVI and percent canopy
cover ranked the lowest (Table 1). R. crinipes presences were
frequently located close to streams and floodplains (medians of
30 and 24 m, respectively) and in the vicinity of low stream
velocity (medians of 0.3 m/s) and low flow streams (median of
0.02 m3/s). Species presence locations also were associated with
low percentages of soil clay and organic matter (medians of 10%
and 15%, respectively), and high tree canopy cover and NDVI
(medians of 85% and 0.7, respectively) (Table 1). In addition, R.
crinipes presences were associated with habitat suitability for

Atlantic white cedar (median¼ 0.5 HSI; Figure 3) and we found
a 35.5% overlap between the suitable areas of both species.

The ensemble model indicated that 284,863 ha (3.26% of the
study area) could be deemed as suitable habitat for R. crinipes
(HSI . 0.4, corresponding to the threshold of habitat suitability
that maximized the sum of training sensitivity and specificity in
our model as suggested by Liu et al. [2016]). We defined areas of
low suitability as those with HSI¼ 0.4–0.6, medium with HSI¼
0.6–0.8, and high with HSI . 0.8. As such, most of this suitable
area belonged to the low suitability category (96.6%), 2% to
medium, and only 0.38% to high suitability. Most of the suitable
area was concentrated in Alabama, Florida, and Georgia,
together accounting for nearly two-thirds (65.1%) of suitable
area, while Mississippi, North Carolina, and South Carolina
accounted for the remaining third (34.9%) (Table 3). When
overlaying habitat suitability with the vegetation type map
defined by LANDFIRE (USDA 2019b), three vegetation types
accounted for nearly half (45.5%) of the suitable areas identified:
eastern small stream riparian forests, Atlantic swamp forests, and
eastern floodplain forests. Combined with seven other vegetation
types (each accounting for ,10% of identified suitable habitat),
these accounted for 79.7% of all potentially suitable habitat
identified (Table 4). Forty-nine other vegetation types accounted
for the remaining 20.3% of suitable area (not included in Table
4).

Of the total suitable area, 19% (53,731 ha) overlapped with
established protected areas registered in the U.S. protected areas
network (PAD-US; USGS 2018b). However, this proportion
varied by state, with Florida having the largest proportion of
suitable area protected (46.5%) while the other states varied
from 7.8% to 18.4% (Table 3). According to the PAD-US land
ownership type classification, the largest proportions of suitable
areas within protected areas corresponded to the state (35%),
federal (29.7%), unknown (11.3%), or private categories (8.6%)
(Table 5). With respect to vegetation types, only Atlantic coastal
marshes and pine flatwoods had high proportions of protected
area (46.9% and 56.5%, respectively; Table 4).

DISCUSSION

Modeling species distributions can be a valuable tool to
improve monitoring efforts for at-risk species and we identified
candidate areas that can be targeted for future surveys for R.
crinipes. We found that the ensemble model had an overall
greater predictive performance compared to individual model
techniques, since it ranked highest in two of four performance
metrics and was among the top for the other metrics. These
results are similar to those reported by Marmion et al. (2009),
who found that weighted ensemble models increased the
accuracy of species distribution forecasts. Therefore, using the
ensemble approach to produce models for rare species may
reduce the bias of individual models and improve survey
effectiveness (Araújo and New 2007; Lomba et al. 2010). For
instance, GAM estimated a large proportion of habitat suitability
(29.5% of the study area), while GBM, MaxEnt, and the
ensemble estimated lower proportions (2.9%, 9.7%, and 3.2%,
respectively; Figure 2). However, given that this model had the
lowest predictive performance, much of this suitable area could

Table 2.—Model performance metrics for each model algorithm, where higher
values represent better association between model-predicted habitat suitability
scores and actual presence and pseudoabsence records.

Metric GAM GBM MaxEnt Ensemble

AUC-PR 0.7 0.74 0.8 0.95

AUC-ROC 0.93 0.95 0.95 0.99

Pearson’s correlation 0.69 0.8 0.76 0.79

Jaccard index 0.58 0.72 0.71 0.69
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be the result of overprediction, particularly in areas far off
riparian zones. Accordingly, GAM’s lower performance had a
lower weight in the ensemble, resulting in most of those possibly
overpredicted suitable areas not being represented in the final
model.

In addition to identifying potentially suitable areas, we
contributed to the understanding of the species’ habitat, which,
like many rare species, was mostly limited to descriptive habitat
associations, and/or highly localized empirical observations. By
relating environmental predictor variables with occurrence data,
we gained greater insight into how a given species responds to
environmental gradients. For example, in contrast to previous
observations noting that R. crinipes was associated with high
percentages of silt and clay (McMillan 2006; Chafin 2011), we
found that occurrences were most commonly found in lower
percentages of clay (mostly around 10%; Figure 3). Also, the
species was reported in full sun or light shade (Chafin 2007),

while we found a median of 85% tree canopy cover, indicating a
potential for higher occurrence frequency in shaded areas than
expected. In addition, we corroborated that R. crinipes is more
likely to occur near rivers and floodplains (Table 1; Figure 3),
characteristics that have been previously noted (e.g., Kral 1996;
Carter 2005).

We also observed a strong relationship between habitat
suitability for Atlantic white cedar and that of R. crinipes (Figure
3), which aligns with previous assertions about the association of
these two species (Kral 1996; Sheridan et al. 1997). However,
only one-third of suitable habitat was common to the two
species, which may indicate that while they are associated, R.
crinipes is not dependent on Atlantic white cedar. Because of the
lack of comprehensive data locating blackwater streams, we had
to use various stream characteristics that may serve as proxies for
them. Using these proxies, we detected that occurrences are
more frequent near stream segments that have low velocities

Figure 2.—Habitat suitability maps for R. crinipes using three modeling algorithms and the resulting ensemble. Areas with consistently higher habitat
suitability scores in individual model approaches are carried out to the ensemble model, while areas deemed as suitable in only one approach are not
represented in the ensemble.
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(medians of 0.3 m/s) and medium water flow volumes (0.02 m3/
s) (Table 1, Figure 3). These stream characteristics, in
combination with other environmental variables, allowed us to
discriminate among the numerous riparian zones in the study
area with only 3.2% of the riparian areas deemed suitable.
Nevertheless, development of a spatially explicit characterization
of blackwater streams (e.g., from remote sensing data) could
represent a better predictor over proxy variables, as it could
include other blackwater characteristics such as tannin concen-
trations.

Most of the rare plants in southeastern forests are herbs,
which require specialized, connected habitats and are suscep-
tible to disturbance (Imm et al. 2001). Within R. crinipes’s
range, floodplain forests have historically been subjected to
periodic logging and other anthropogenic disturbances (Chafin
2007; Schotz 2017). Of particular interest for R. crinipes
conservation, we estimated that 19% of the species’ predicted
suitable habitat had some degree of protection, particularly on
state- and federally-protected lands. Nevertheless, over one-
third (35%) of suitable areas belonged to other protection
categories, including private lands, local governments, and
NGOs (Table 5), highlighting the potential conservation

impact that these protected areas could have for this (and
other) at-risk species (Graves et al. 2019). In our study area,
Alabama and Georgia had large shares of suitable habitat
(20.7% and 22.2%, respectively), but also exhibited lower
proportions of suitable habitat with land protection (7.8% and
9.7%, respectively), which present additional conservation
challenges for the species in these states (Table 3). A similar
pattern was observed in vegetation types, where the largest
proportions of suitable areas were found in eastern small
stream riparian forests (20.8%) and Atlantic swamp forests
(14.8%); yet these were among the least protected vegetation
types (11.6% and 24.3%, respectively). Strategic conservation
of suitable habitat, particularly small stream riparian forests
and Atlantic swamp forests, has the potential to improve long-
term conservation of R. crinipes and other at-risk species.

Figure 3.—Response curves for a selection of environmental predictor variables in the MaxEnt model. Each curve depicts how suitability for the
species changes across each environmental variable gradient.

Table 3.—Suitable areas for R. crinipes in the study area. We show the total
suitable area per each state and the proportion of that area currently designated
as protected areas (PA) and non-protected areas (non-PA).

State

Total suitable

area in ha

(% of study area)

Suitable area

in PA in ha

(% of state total)

Suitable area

in non-PA in ha

(% of state total)

Alabama 58,947 (20.7) 4582 (7.8) 54,365 (92.2)

Florida 63,132 (22.1) 29,371 (46.5) 33,761 (53.5)

Georgia 63,186 (22.2) 6145 (9.7) 57,041 (90.3)

Mississippi 25,154 (8.8) 4623 (18.4) 20,531 (81.6)

North Carolina 34,657 (12.2) 3836 (11.1) 30,820 (88.9)

South Carolina 39,788 (14) 5174 (13) 34,614 (87)

Total 284,863 (100) 53,731 (19) 231,132 (81)

Table 4.—Proportion of suitable habitat area occupied by different vegetation
types as defined by LANDFIRE vegetation layer. We only show the 10 main
classes (out of 59) that combined accounted for .75% of the total suitable
area. We provide summaries for both protected (PA) and non-protected areas
(non-PA).

Vegetation type

Total suitable

area in ha

(% of study area)

Suitable area

in PA

in ha (%)

Suitable area

in non-PA

in ha (%)

Eastern small stream

riparian forests

61,626 (20.8) 7164 (11.6) 54,462 (88.4)

Atlantic swamp forests 43,839 (14.8) 10,636 (24.3) 33,203 (75.7)

Eastern floodplain forests 29,241 (9.9) 5812 (19.9) 23,429 (80.1)

Managed tree plantation 25,848 (8.7) 2410 (9.3) 23,438 (90.7)

Longleaf pine woodland 20,834 (7) 4589 (22) 16,244 (78)

Atlantic coastal marsh 15,950 (5.4) 7488 (46.9) 8462 (53.1)

Pine flatwoods 14,483 (4.9) 8187 (56.5) 6296 (43.5)

Coastal plain oak forest 8977 (3) 869 (9.7) 8107 (90.3)

Maritime forest 7340 (2.5) 1885 (25.7) 5454 (74.3)

Developed-upland

herbaceous

5112 (1.7) 1411 (27.6) 3701 (72.4)
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Our modeling work met the standards recommended by
Sofaer et al. (2019b) and Araújo et al. (2019) for developing
species distribution models to inform decision making. These
included the use of quality presence data, performance of cross
validation of the models, use of species-tailored predictors at an
appropriate extent and spatial and temporal resolutions, use of
multiple algorithms including a model ensemble, evaluation
with multiple metrics, and model development with expert
opinion. Nevertheless, as a cautionary note, our model does not
represent the likelihood of species occurrence, but rather the
degree of similarity of predicted areas to used habitat, which may
be used to inform design and implementation of additional
surveys for R. crinipes presence. Species distribution models,
such as we have presented herein, are not inherently final and
should be refined and recalibrated as new survey data become
available. For instance, while R. crinipes has not been reported in
South Carolina (McMillan 2006), the ensemble model showed
opportunities for conducting surveys in the state (Table 3, Figure
2), which could then be used to supply additional calibration
data (presence and absence data) to refine and improve current
models. Another important avenue to improve these models will
be the inclusion of true absence data (i.e., the location where the
species has been surveyed for but not detected). However,
logistical constraints often prevent sampling designs whereby
absences may be recorded, resulting primarily in opportunistic
observations of species presence. Structured sampling designs
that allow recording of true absences will help further refine
models by reducing the uncertainty caused by having to use
pseudoabsences (Lobo et al. 2010).

Our study illustrates the potential utility of species distribu-
tion models (particularly ensemble models) for identifying gaps
in representation of suitable habitats in current conservation
land portfolios, which can subsequently inform conservation
strategies for at-risk species. We produced a habitat suitability
map that can inform monitoring and survey efforts for R.
crinipes in the southeastern United States. A high-resolution
digital map can be accessed at USGS ScienceBase-Catalog
(https://www.sciencebase.gov/catalog/item/
5f57a9ef82cea1f95a61a6f3). By combining the output of indi-
vidual model approaches into an ensemble, we were able to
improve the predictive model performance and improve our
understanding of the species’ habitat associations at the
macroscale. Our ensemble model will be used to guide
additional surveys for the species in the next survey season,

where new records will allow refining the models herein.
However, further modeling work would be contingent on
funding availability. Therefore, species distribution modeling
can be an effective tool to incorporate our understanding of at-
risk species into a transparent framework. Modeling potential
distributions can serve a variety of applications beyond survey
planning, because it can be the first step for further analyses,
including informing protection and restoration, informing
species translocations and reintroductions, and estimating
impacts to species viability from climate and land use change
(Franklin 2013; Urbina-Cardona et al. 2019). We encourage
practitioners to take advantage of this approach to target survey
efforts for other at-risk species.
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